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lïïTRODUCTION 

Because of the increased highway construction in the past two decades, 

the demand for suitable aggregates for base courses has exceeded the sup­

ply in many parts of the countiy. To compensate for this shortage of ag­

gregates there has been an increased use of stabilized soil. 

Adding lime or port land cement to the soil sre two means of stabili­

zation that have been widely used. Both of these additives have been • 

tested extensively in a practical way to determine their efficiency in 

the stabilization of various soils. Portland cement pastes have also been 

thoroughly investigated to determine the mechanisms by which cementation 

occurs. Less investigation has been made of the soil-lime reaction, but 

what has been done indicates that the reaction products are similar to 

those formed during the hydration of portland cement. However, most of 

the work that has been done in determining the mechanism of the soil-lime 

reaction has been concerned with the effect of time on the strength of 

the soil-lime mixture, and the effect of time and/or temperature on the 

reaction products formed. Little attention has been given to the inter­

relation of time, temperature, and strength of lime stabilized soil. 

The objective of this investigation is to study this interrelation 

of curing time, curing temperature, strength, and reactions in lime-clay 

mixtures. It will be noted that previous time-temperature-strength 

studies were done before lime-clay reaction products were known or identi­

fiable, so it seemed appropriate to try and draw together these two paths 

of research, using one to explain or show the significance of the other. 
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REVIEW OF LITERATURE 

Soil-Lime Stabilization 

Lime is effective in stabilizing heavy clays, a fact veil establish­

ed by many investigators. Herrin and Mitchell (2U) have compiled an ex­

cellent summary of the published knowledge of soil-lime mixtures to i960. 

Up to that time it was recognized that lime improved the strength charac­

teristics of the soil by a mechanism that was not fully understood, but 

it appeared that the lime reacted with the clay size portion of the soil 

to form reaction products that cement the soil particles together (2̂ ). 

Since then several investigators have established that the reaction pro­

ducts formed, in the soil-lime reaction are similar to those formed during 

the hydration of portland cement (7,12,llv,15,1.7,30,U5,66). 

Lime-Bentonite Reaction 

The production of hydrates by a lime-clay reaction has been termed a 

"pozzolanic" reaction. A pozzolan is a siliceous or siliceous aluminous 

material which has little or no cementitious value, but will react with 

calcium hydroxide in the presence of moisture to form cementitious com­

pounds (1,1*1). A pozzolan can be either a natural or artificial material. 

The beneficial effect of lime on the workability and strength of 

clayey soils has long been recognized. However, it is only in the past 

few decades that the mechanisms by which this improved strength and worka­

bility are obtained have gradually become understood. 

It now appears that the lime-clay reaction takes place in two steps. 

Davidson and Handy (ll) suggest three basic reactions: first, the calcium 
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ions cause a reduction in the plasticity of the clay; second, the lime 

may be carbonated by the carbon dioxide of the air resulting in the forma­

tion of a weak cement; and third, a ceaentitious reaction takes place 

between the lime and clay mineral. According to Hilt and Davidson (26) 

before any pozzolanic reaction takes place, the lime content of the lime-

clay mixture must exceed the amount needed to modify the clay. 

Studies made on the products of lime-clay systems have shown that 

calcium silicate and calcium aluminate hydrates are formed in various 

forms at temperatures ranging from room temperature up (17,18,25,̂ 5,66). 

Several investigators have studied the strength characteristics of 

the calcium silicate hydrates and have characterized all the products as 

cementitious (33,̂ 2,US,55,62). Furthermore, the formation of calcium 

aluminate and calcium silicate hydrates during the hydration of portland 

cement is believed to be responsible for the strength and cementing 

ability of portland cement concrete (6,10,U0), although the aluminates 

play a less significant role (6). The calcium silicate hydrate known as 

tobermorite gel, a poorly crystalline colloidal substance, has been called 

the "heart of concrete" (7). Jambor (30) found that the kind and micro-

structure of calcium silicate hydrate as well as the amount formed has an 

effect on the strength developed by hardened lime-pozzolana pastes. 

Studies have also been made comparing the amount of combined silica to 

the compressive strengths of sand-lime bricks, but no conclusions were 

reached (5)• 

Reaction Products 

The major reaction products now recognized to be formed during the 
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lime-clay reaction are tobermorite, CSH(l) , CSH(II), CSS(gel), calciuni 

aluminate hydrates,, and hydrogamet (17,25,30,66). 

The first foui- cf these compounds are members of vhat is known as 

the tobermorite group of calcium silicate hydrates (57). The structure 

of tobermorite is similar to that of some clay m5.nerals, particularly 

vermiculite (43,6l). All members of the tobermorite group, however, do 

not have precisely the same structure. These calcium silicate hydrates, 

in addition to the sti-uctural similarities, also have the small particle 

size, large surface area, and a number of other properties analogous to 

clay minerals (12,58). 

Tobermorite 

Tobermorite is a platy calcium silicate hydrate -with a composition 

approximating Ĉ SgĤ  ̂ (57)« There are several known discontinuous hydra­

tion states of. tobermorite, each with a characteristic c-axis spacing. 
o 

The mineral exists normally with a c-axis spacing of 11.3 A which may be 
c o 

collapsed to 9.3 A by heating. A 1̂  A variety, presumably having an extra 

layer of water molecules between adjacent layers, has. been found naturally 
o o 

and has been synthesized. Crystalline 10 A and 12.6 A varieties have also 

been found but these phases have not been fully investigated (57). The 
o 

11 A tobermorite has been shown to be the major constituent of the binding 

materi.91 in most autoclaved cement-silica or lime-silica products (17,33, 
o 

3̂ ,45). A typical X-ray diffraction pattern of the 11 A tobermorite (3̂ ) 

It is customary in cement chemistry to denote the following compounds 
by short symbols; CaO = C; SiÔ  = S; AlpO„ = A; Fe.O = F; MgO = M; 
EgO = H. Thus nCaO'pSiOg'ÇLĤ O is represented by CSH. 
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is shown in Tabls 1. 

Table 1. Representative X-ray diffractometer d-spacings for the tober­
morite group of calcium silicate hydrates 

Synthetic CSH(I) CSE(II) CSH(gel) 
tobennorite 

{3hf (58)^ (23)^ ( 7 ) ^  

0 
d-spa., A Int.̂  

o 
d-spa., A Int.̂ , 

0 
d-spa.,.A., Int.̂  

G 
d-spa.J A. Int.® 

11.1 10 12.5 vs 9.8 9 3.05 s,vb 
5.^ 2 5.3 WW 4.9 2 2.79 wb 
3.62 <1 3.04 vs 3.07 10 1.82 wb 
3.51 <1 2.80 s 2,85 5 
3.33 2 2.4 w,d 2.80 9. 
3.08 6 2.1 w,d 2.40 4 
2.97 3 1.82 s 2.20 1 
2.81 3 1.67 mw 2.10 1 
2.52 <1 1.52 vw 2.00 6 
2.43 <1 1.40 w 1.83 9 
2.27 1 1.72 1 
2.12 1 1.62 1 
2.06 <1 1.56 5 
2.00 <1 1.40 4 
1.84 3 

-^1.82 1 
1.75 
1 

<1 
1 

Ŝource of data. 

R̂elative intensities on an arbitrary numerical scale: 10 being 
the strongest. 

R̂elative intensity: s, strong; m, medium; w, weak; v, very; 
b, broad; d, diffuse. 

Kalousek (32) and Diamond (12) have studied isomorphous substitutions 

in tobermorite. It was found that no significant change in the X-ray 

diffraction pattern of synthetic tobermorite was caused by the incorpora­

tion of considerable amounts of aluminum, magnesium or iron ions into the 
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lattice of the material. It was presumed that these.ions substituted for 

silicon in the tetrahedral coordination, rather than for calcium in the 

structure, a].though this violates Pauling's rules. 
o o 

A shift of basal spacing from 11.2 A to 11.5 A was shown in the X-ray-

diffraction pattern of Al-substituted tobermorite in a sample having 15 

percent replacement of SiÔ  by Al̂ Ô . Except for this, there was no defi­

nite proof that the ions actually substituted in the silica chains. 

Kalousek first reported the appearance of a hydrogarnet phase (Ĉ ASHĵ ) in 

his compositions prepared with more than 11 percent nominal Al-substitution. 

Diamond observed that some disorder in the c-axis direction resulted 

from substitution of magnesium and iron (the ionic radii of both being 

substantially larger than aluminum), because the basal intensities of the 

(002) and the (222) peaks are approximately halved, while the strong peaks 

due to reflecting planes entirely within the unit layer, i.e. the (220) 

and the (UOO), are essentially unchanged in intensity. 

o o 
Diamond also obsei-ved that certain new peaks (2.7 A, k.2 A) appeared 

o o 
with all the substituents including aluminum, while others (1,95 A, 7.0 A) 

appeared only with the substitution of the larger ions, iron and magnesium. 

CSH(I) 

Calcium silicate hydrate (l) has been called "CSH(B)", the "fibrous 

phase", or "C/S 0.80 - 1.33 hydrate", etc. by different investigators. 

The designation "CSH(l)" is now most generally used. This phase, while 

not known to occur naturally, may be produced in a variety of ways, either 

hydrothermally or by reaction at room temperature, through the reaction of 

silica or silica sol with calcium hydroxide solution or reaction of sodium 



www.manaraa.com

silicate solution'with calciim salts (3̂ ,58,59). 

Recent studies by Diamond (12), Glenn (IT), and Wang (66) have shown 

that CSH(I) can be readily formed by reaction between lime and clay 

minerals at both room and elevated temperatures. 

CSH(I) is a poorly crystallized gelatinous precipitate which is re­

lated structurally to tobermorite, but the exact structure is not known. 

Its composition varies, the C/S ratio is probably between 0.8 and 1.33 

(35); the lower limit is well established but the upper one is less defi­

nite, and higher values up to 1.5 or even farther, have been suggested 

(59)» Taylor (57) arbitrarily sets I.5 as the upper limit and regards the 

semi-crystalline tobermorites prepared at room temperatures having a 

higher C/S ratio as CSH(ll). Furthermore, this product is metastable and 

eventually transforms to tobermorite or other phases depending on the 

composition (3̂ ). 

Regardless of C/S ratio, the X-ray diffraction pattern resembles that 

of tobermorite except that only a few of the strongest reflections can be 

observed. These are mainly ones with (hkO) indices. "Typical" data ob­

tained by Taylor (58) are given in Table 1; similar results have been ob­

tained by other investigators (12,21,3̂ ,̂ 7). A basal spacing is sometimes 
o 

present in the region 10-13 A; some investigators report this line as 

"very strong", while some list it as "ver̂ "- weak, very broad", and in a few 

cases it is absent entirely. This disagreement is caused by the fact that 

this basal spacing is often not observable on diffractometer equipment, 

but can be observed by film camera diffraction technique, which permits 

long-time exposure and hence more certain recognition of peaks of overall 
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veak intensity (66). Diamond (12) recently reported a CSH(l) X-ray pat-
o o o o 

tern which exhibits only 3.25 A (w), 3.02 A (w), 2.78 A (w), 1.8 A (w), 
o 

and 1.66 A (vw) peaks. 

Aluminum may also substitute in the CSE(l) structure. The evidence 

for this was found by Diamond (12) in his differential thermal analysis 

pattern of CSE(I). 

CSH(II) 

Calcium silic «e hydrate (II) is commonly abbreviated CSH(ll), but 

"CgSÊ ", "hydrate II", "1.8 C/S hydrate", etc. have also been 

used as designations. It denotes a lime rich phase, having a C/S ratio 

of at least 1,5 and probably up to 2.0, and a low degree of crystallinity, 

comparable with that of CSH(I) (16,35,57,58). 

CSH(II) is formed as an intermediate product by hydrothermal reac­

tions, usually below 200®C, between lime and silica (3̂ ,35). It appears 

that this is true even when the overall C/S ratio of the mixture is low; 

in that case CSH(II) is formed first and later reacts with more silica to 

give lower C/S ratio products. Evidence.of the formation of CSH(II) by 

reactions of lime with clay minerals have been reported recently (17,66). 

The X-ray diffraction pattern resembles that of CSH(I) except that 

the basal spacing of CSH(II) appears to be comparatively strong and fairly 
o o 

consistent between 9.8 and 10.5 A, and the (060) line at 1.67 A, present 
o 

in CSH(I) is not found in CSH(II), while a new 1.56 A line characterizes 

the presence of CSH(II) (16,35,̂ 7,59). A representative pattern given 

by Heller and Taylor (23) is given in Table 1. 

Ho data has been reported on lattice substitution of CSH(ll). 
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CSH(gel) 

Calciim silicate hydrate (gel) is commonly abbreviated CSH(gel) but 

it has sometimes been called "tobermorite (G)" (G for gel) to imply its 

structural resemblance to natural or synthetic tobermorite, even though 

the crystal structure of this phase is unknown. It is a relatively high-

lime phase having a C/S ratio usually at I.5 or higher (7,58). 

CSS(gel) is very poorly crystallized, having an X-ray diffraction 

pattern normally consisting of three lines; a very strong and very broad 
o 

reflection, with a maximum at 3.05 A, and two much weaker broad lines at 
o 

2,79 end 1.82 A (Table l) (7). These three lines correspond to three 

strongest (hkO) lines of tobermorite. Recently, however, only two lines 
o 

at 3.03 and 1.82 A were observed by Diamond (12). Kantro et al. (36) 

observed only a single broad diffraction band with the Tnavim-rm in the 
o 

vicinity of 3 A. 

Calcium nate hydrates 

Compared with the calcium silicate hydrates, the calcium aluninate 

hydrates are relatively well crystallized. They occur frequently as pro­

ducts of Portland cement hydration, and of the reaction between line and 

aluminum bearing clay minerals. 

Table 2 gives a few selected X-ray diffraction lines for the calcium 

aluminate hydrates that have been found in lime-clay reactions. 

Ĉ AHg is usually formed at temperatures slightly above 50°C and is 

thermodynamically stable at room tanperature (58,67). Its structure may 

be related to that of garnet, Câ Al2(SiOĵ )̂ , by replacement of each 

(SiÔ )"̂  by 4 (0E)~, giving Câ Alg(OH)̂  (58). 
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CgASg, and CAĤ  ̂are formed easily under appropriate condi­

tions at room temperatures. It has been found that when is in con­

tact with aqueous solution it is actually in the form of 

dehydrates readily with moderate drying at room temperature to give a 

mixture of a and 3 forms of a 13 Ĥ O hydrate. Drying over CaCl̂  results 

in the formation of a phase of (52). 

Table 2. Selected calcium aluminate hydrates 

o 
Composition Crystal d-spacing, A Source 

. system Longest Strongest .three. of data 

Cubic 5.1*1 2.30 (10)̂  5.ll̂  (9) 2.04 (9) (47) 

Hexagonal 10.6 
b 

(52) 

Hexagonal 8.2 8.2 (vs)*̂  4.1 (s) 2.9 (m) (52,67) 

Hexagonal 7.92 7.92 (vs) 3.99 
•u 
(vs) 2.87 (s) (8,52) 

Hexagonal 7.!* 
D 

(52) 

Hexagonal 7.̂  
b 

(52) 

aCgAEg Hexagonal 10.7 10.7 (10) 5.36 (8) 2.86 (7) (47,52,67) 

6C AS Hexagonal 10.lv 
b 

(52) 

C,AH, Hexagonal 8.7 
b 

(52) 

Ĉ AĤ '̂CaCÔ  Hexagonal 7.57 7.57 (10) 3.78 (4) 2.86 (3) (9) 

. 

Hexagonal 14.3 14.3 (10) 7.16 (10) 3.56 (7) (47) 

Relative intensities on an arbitrary numerical scale; 10 being 
the strongest. 

D̂ata not obtained. 

'̂ Relative intensity: v, very; s, strong; m, medium. 

Several phases iso-structural with Cĵ AĤ  ̂liave some of the hydroxyls 

replaced by a different anion. The dimension of the structural element 

and essential features of the structure are unaffected. A wide range of 
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anions can be incorporated but the ones most impoi i;ant to cement chemistry 

are (CÔ )" and (SOĵ )" (58). Two phases in which the anion is carborate 

are known; a natural mineral, hydrocalumite, and calcium monocarboalumi-

nate, Ĉ A-CaCÔ 'U Ĥ O. The latter is formed very readily from aqueous 

suspensions or supersaturated solutions at or below room temperatures when 

small amouùts of CO , such as normally exist in the atmosphere, are pre­

sent (58). 

CgASg is structually related to with certain Al(OS)̂  substitu­

tion for EgO in the latter (3l). On drying over CaCl̂ , CgAŜ  is formed 

(52). 

The structure of CAŜ g and its relation to the calcium aluminate 

hydrate is not clear (31). It occurs primarily at temperatures below room 

temperature (4?). 

Hydrogamet 

Hydrogamets are solid solutions within the area 

Ĉ AHg Ĉ AŜ  (63). 

They occur as natural minerals and have been prepared hydrothermally froc 

mixtures of Ĉ A and Ĉ S, Ĉ AÊ  and calcium silicate hydrates, and lime 

and clay minerals (63,66). -, 

The three strongest lines of the diffraction pattern of a typical 

hydrogarnet are given in Table 3 (3). 
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Table 3. X-ray data for a typical hydrogarnet (3) 

o a 
d-spacing, A I • 

2.68 100 

3.00 80 

1.61 80 

Relative intensities on an arbitrary numerical scale, 100 
being the strongest. 

Time, Temperature, Strength Interrelationship 

As long ago as 1886 it was recognized that there was some relation­

ship between curing temperature, curing time and strength of portland 

cement and lime-sand cement (6U). Since that time other investigators 

have studied the interrelation of strength, time and temperature of con­

crete (ij,U9,50,51s56). Three principal approaches to the problem have 

been made. Bergstrom (h) suggested a "maturity" rule such that any given 

concrete would attain the same strength if A(T - 0) were constant. In 

this expression, 

A = time of curing 

T - curing temperature (®C) 

0 = the temperature at which no increase in strength occurs. 

Plowman (50) modified this to the form: 

UCS = Constant + log A(T - 0). 

Rastrup (5l), after studying the hydration process ba.sed his "maturity" 

rule on the form: UCS = f(T̂ j 
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where 

- = / 2̂  ̂" (3A. 
o 

is the "maturity" at curing temperature T, after a curing time A. 

The effect of curing temperature on the strength of soil-lime mix­

tures has also been studied (13,t6). It was found in these studies that 

the effect of increased curing temperature was to increase the strength 

of the soil-lime mixtures at the same age. Metcalf (46) also showed that 

although none of the "maturity" rules above hold exactly for soil-lime 

mixtures, his results most nearly follow the rule proposed by Rastrup." 

Metcalf (U6) assumed that the reaction between lime or cement and 

clay could be represented by the Arrhecius equation; 

k = B 

where 

k = the reaction rate 

E = the activation energy 

R = the gas constant 

T = the temperature (in °Absolute) .and 

B = constant 

then plotted, his results on the basis; 

log (UCS) = B» - B"/T(°Absolute) 

where 

B* and B" are constants. -

He found that the results of cement-stabilized soils plot a constant 

slope over the range 0-65°C, indicating that the hardening action in 
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that temperature range is essentially similar and independent of the type 

of soil. 

For lime-stabilized clays, however, Metcalf found that not only was 

the slope of the curves different for the different clays but that there 

was an abrupt change of slope in the vicinity of He made no comment 

concerning the change of slope at but did conclude that the lime-clay 

reaction responsible for the strength of the lime-clay mixture is not the 

same for all clay minerals. 
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MTERIALS 

Bentonite is a clay formed by decomposition of volcanic glass. The 

predominate clay mineral is usually montmorillonite ikh)» The clay used 

in this investigation was a Ca-saturated montmorillonitic clay commercially 

produced as the "Panther Creek Southern Bentonite" from White Spring, 

Mississippi by the American Colloid Company. This bentonite contains 

approximately ̂ 6% SiÔ , 20% Al̂ Ô , 8% Fê Ô , and 3% MgO as its main con­

stituents.̂  The S/A ratio is approximately It.75. The chemical formula 

of a similar bentonite from Amoy, Mississippi is listed in AAPG Reference 

Montmorillonite is composed of units made up of two silica tetrahedral 

sheets with a central aluminum hydroxyl octahedral sheet. All the tips of 

the tetrahedrons point toward the center of the unit. The tetrahedral 

and octahedral sheets combine so that the tetrahedrons of each silica sheet 

and one of the hydroxyl layers of the octahedral sheet form a common layer. 

The atoms common to both the tetrahedral and octahedral layer are 0 instead 

of OH. The layers are continuous in the a and b directions and are stack­

ed above one another in the c direction. 

The units are stacked with the 0 layers of each unit adjacent result­

ing in a very weak bond and excellent cleavage. The outstanding feature 

of this structure is that water and other polar molecules can enter between 

the unit layers causing the lattice to expand in the c direction (20). 

Clay Minerals (37) as (Al. 
Ca 

1. it0̂ ®0.32̂ ®0.31 ̂ ̂ "̂ 0.12̂ 3̂.88 ̂ °10 ̂  ̂2 

Înformation furnished by the American Colloid Company. 
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Isomorphous substitution of A1 for Si in the tetrahedral sheets and/or 

Mg, Fe, Zn, Hi, Li, etc., for aluminum in the octahedral sheets is quite 

common. As can he seen by the chemical formula of the material used in this 

investigation, there is indeed isomorphous substitution in both the tetra­

hedral and octahedral sheets. 

The lime used in the investigation vas a powdered analytical reagent 

grade calcium hydroxide. 

All water used in the preparation of specimens and in testing proce­

dures was distilled by a Bamstead Automatic Water Still, No. SLH-2. 
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METHODS OF STUDY 

In order to reduce the variables to a minimum, only one ratio of lime 

to clay vas examined, and the amount of vater was held constant. A C/S 

ratio of approximately 1.0 was chosen for the study because Wang (66) had 

established that this C/S ratio produced a variety of reaction products 

over the curing times and tempera;Sj2r£S to be studied. The clay used in 

the investigation was chosen because some irforaation concerning its reac­

tion with lime had already been developed by Wang (66). 

In generaJ., the procedure followed in the investigation was to pre­

pare 1 in. high by 1/2 in. diameter samples of the lime-clay mixture, cure 

them at the selected temperature for the selected times, then test them 

for unconfined compressive strength. Following the strength testing, all 

the broken samples of the same curing time gjid temperature were placed in 

a container and vacuum dryed over a mixture of CaClg and Ascarite for a 

period of at least forty-eight hours. Following the vacr:3m drying the 

samples were ground by hand until the powder passed the Ho. 200 sieve. 

Representative samples of each mixture cured under different conditions 

.were then scanned by X-ray diffraction for evidence of reaction product 

formation. Other representative samples were tested to determine the 

amount of calcium hydroxide, silica, and alumina present in the cured 

samples. The techniques used are explained in greater detail in subsequent 

paragraphs. 

Molding and Testing of Specimens 

The utilization of 1 in. high by 1/2 in. diameter "-'.. ength test speci­

mens results in considerable savings of time and materials. The results 
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obtained reflect the cohesive strength of the lime-clay system, and are 

sufficiently valid for comparative studies. The molding apparatus has 

been described iu detail by Roderick (53); the lime-clay mixture is com­

pressed by hand into a cylindrical mold through a lever arrangement, and 

density and moisture content are controlled in the molded specimens. 

In the present investigation, the specimens were molded to constant 

density at optimum moisture content for maximum density. This optimum 

moisture content and maximum density were determined by use of the Harvard 

Miniature Mold. The procedure used is described in detail by Wilson (68). 

The procedure is similar to that described by ASTM Designation; D 698-5S T 

(2) for the moisture-density relation of soils. 

Proper amounts of lime, clay and water were hand mixed until a uniform 

mixture was obtained, then the amount of material required to attain the 

maximum density was weighed out and placed in the mold. Five specimens 

were used in each testing condition. After completion of specified curing, 

the specimens were tested by a proving ring type of compression apparatus, 

accurate to +_ 25 psi, and the average of the five specimens was reported 

as the unconfined compressive strength. 

Curing 

After molding, the samples were placed on a rack inside an airtight 

hard plastic Lustro-ware bowl in which distilled water had been placed 

such that the water was not allowed to come in contact with the specimens. 

The tops of the bowls, although very tight fitting, were further sealed 

with cellophane tape to prevent the entry of carbon dioxide and the loss 

of moisture, before being placed in the appropriate curing chambers. 
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Electric ovens were used as chambers for the 50°C, and 60®C curing. 

The 23°C curing was performed in a temperature-controlled humidity room. 

The 5®C curing was done in a small laboratory refrigerator. 

X-ray Diffraction 

A General Electric XRD-5 diffTactometer was used for general investi­

gation of powder samples for the presence of crystalline products and for 

the determination of the calcium hydroxide content of the cured mixture. 

Nickel filtered copper Ka radiation was used. The powder samples were 

mounted in disc-shaped brass rings with a pressure of 1000 psi in order to 

obtain a dense packing, avoid effects of preferred orientation, and give 

good reproducibility ($4). To further avoid the effects of preferred 

orientation the discs were continually rotated while in the X-ray beam 

(22) .  

Determination of Calcium Hydroxide Content 

The quantitative determination of the calcium hydroxide content of 

the cured mixture was made using the internal standard method outlined by 

Klug and Alexander (39). 

Quartz powder was used as the internal standard. The standard series 

of mixtures for use in preparation of the calibration cui-ve was made up 

from finely ground quartz powder, calcium hydroxide, calcium carbonate and 

the clay. The mixtures were placed in four-dram glass vials with small 

pieces of rubber and mixed in a Spex Model 8000 vibratory mixer/mill for 

five minutes to assure thorough mixing. Five samples of each mixture were 
o 

then examined by X-ray analysis and the intensities of the d = 2.62 A 
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(calcium hydroxide) and d = 2ok3 A (quartz) reflections vere compared. 

Because of the linearity of the curves and the reproducibility of the data, 

it was believed unnecessary to use additional mixtures. 

In the determination of the intensities, allowances were zaade for the 

background intensity. Figure 1 shows a conçiosite chart of the X-ray traces 

of q̂ uartz, calcium hydroxide, montmori]J.onite, and tobermorite for copper 

Ka radiation from 32° to Uo® 20; the background under the calcium hydroxide 

peak at approximately 3̂ .1® was assumed to be equal to the background at 

around 39®. Similarly, the background under the quartz peak at 36.8° was 

taken as a straight line connecting the background at 38.2° and 35.9". 

These observations were used in the calculation of the intensities of the 

quartz and calcium hydroxide peaks as shora in Figure 2. A line was drawn 

connecting the intensity at 38.2° to the intensity at 35.9° and the dis­

tance from the quartz nesk to this line was considered the peak intensity 

of the quai-tz. Another line was drawn parallel to the intensity at 38.2° 

and the distance from the calcium hydroxide peak to this line was consider­

ed the peak intensity of the calcium hydroxide. The heights were measured 

rather than areas because observations showed that there was no appreciable 

differences in line broadening. The resulting calibration curve is shown 

as Figure 3. 

The quantitative analysis of the cured mixtures was carried ov.t under 

the same conditions as the preparation of the calibration curve.. In this 

case J 0.5 grams of ground quartz was mixed with 2.5 grams of the ground 

cured sample and the calcium hydroxide content found by comparison of the 

ratios of the intensities of the lines indicated above with those of the 
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Figure 2. Example calculation of the intensities of the quartz 
and calcium hydroxide peaks 
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Figure 3. Calibration cuzTre for determination of calcium hydroxide 
content of cured specimens by X-ray analysis 
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standard curve. The hygroscopic moisture content of the sample was deter­

mined and the calcium hydroxide content was reported as grams per 100 

grams oven-dry mixture. 

Determination of Silica and Alumina Content 

The amounts of silicates and aluminates contained in the reaction 

products may he determined by chemical means because the reaction products 

are soluble in dilute ECl whereas the solubility of the clay mineral is 

negligible under certain conditions (40). 

Preliminary tests for optimum conditions for extraction 

Time of extraction The procedure is designed to extract the maxi­

mum amount of Ca-silicates and aluminates formed but to cause the minimum 

dissolution of clay structure. Preliminary tests had shown that pure 

tobermorite prepared at 1T5°C in a saturated steam autoclave can be dis­

solved completely in a sufficient amount of 0.1 H HCl within 30 minutes by 

continuous shaking. It also has been shown that clay or soil samples are 

not subjected"to any extensive breakdown under this condition.̂  

Proper formality of HCl The sample must be dissolved in HCl of 

such strength as to give a final supernatant pH of between 1 and 2. The 

pH is critical for two reasons. First, the rate of polymerization of 

silicic acid dissolved is a minimum in this pH range (29). Second, the 

aluminum ion is stable at this pK range, but slowly pol̂ inerizes and pre­

cipitates as Al(OH)̂  at a pE greater than 4. In addition, the strength 

Ĥo, C., Soil Research Laboratory, Iowa Engr. Exp.. Sta., Iowa State 
University of Science and Technology, Ames, Iowa. Solubility of Tober­
morite in dilute ECl. Private communication. 196U. 
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of the HCl must be such that all the calcium silicates and aluminates are 

dissolved aad at the same time a minimum amount of clay is dissolved. The 

optimum strength of the HCl used for extraction varies depending on the 

clay and the lime content of the lime-clay mixture. To determine the op­

timum acid strength for the lime-clay mixture used in the present investi­

gation, a series of tests was made by shaking 0.5 grams of the sample in 

50 ml HCl for 30 minutes» The results are shown in Table 4. The cured 

lime-clay mixture chosen for the determination had previously been deter­

mined to contain the least unreacted calcium hydroxide. 

Table 4. Results of optimum HCl normality determination 

Sample HCl 
IÎ 

pH SiOg dissolved 

. gm/100 gm.sample. 

AlgOg dissolved 

gm/100 gm sample 

Clay 0.00 ' • 6.0 0.018 0.000 
Clay 0.10 1.5 0.018 0.09k 
Clay 0.15 l.h 0.220 0.189 
Clay 0.20 1.1 0.180 , 0.265 
Clay 0.25 1.1 0.200 0M2 
Clay 0.30 , 1.0 0.250 0.510 
Cured Lime-clay 0.00 11.7 0.200 1.965 
Cured Lime-clay 0.10 3.7 7.70 3.250 
Cured Lime-clay 0.15 2.0 12.70 5.̂ 2 
Cured Lime-clay 0.20 1.6 12.20 5.k42 
Cured Lime-clay 0.25 1.45 12.00 5.744 
Cured.Lime-clay 0.30 1.3 12.T0 5.744 

From these data, after making allowances for possible experimental 

error, it was decided that an acid concentration of 0.20 H and a 30 minute 

shaking time best met all the criteria. 

Sample extraction 

A suspension of 0.5 grams of vacuum-dryed cured sample in 50 ml of 



www.manaraa.com

26 

0.2 K SCI was placed in a 125 ml Erlenmeyer flask. The flask was placed 

on a vibratory shaker operated at approximately 400 rpm for 30 minutes. 

The residue was then immediately washed into a centrifuge tube and centri-

fuged at lé,000 rpm for 10 minutes to obtain a clear supernatant, which 

was then diluted to 100 ml with distilled water in a 100 ml volumetric 

flask. 

Alum-ina determination 

Modifying the procedure for determination of ni mim outlined by 

Vogel (65), a quantity of extract containing between 0.01 and 0.10 mg of 

aluminum in a 2$ ml volumetric flask was diluted with 5 ml of a buffer 

solution. This buffer solution is made up of approximately 77 grams 

and 57 œ1 concentrated HAC per liter to give a pH of k.5 (the amounts are 

given as approximate because they vary depending on the strength of the 

concentrated HAC). One ml of 0.2 percent Aluminon reagent was added and 

the mixture made up to 25 ml with distilled water and allowed to stand for 

30 minutes before the color intensity was measured at 520 my on a Beckman 

Model B spectrophotometer. A calibration curve was prepared in exactly 

the same manner by using a standard solution made up of AIK(S0ĵ )̂ «12 H_0 

to contain 0.01 mg/ml of aluminum. The aluminum content in each sample 

was determined from the calibration curve. The test gave the amount of 

dissolved aluminum but for ease in reporting and comparing the results 

this was converted to dissolved alumina. Correction for the hygroscopic 

moisture content of the sample was made and the results expressed in grams 

per 100 grams oven-dry mixture. 

Silica determination 

Following the procedure outlined by Govett (19), an aliquot of 
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extract containing between 0.2 mg and 0.7 mg SiÔ  was added to a 25 ml 

volumetric flask, acidified with 5 ml of 1 N Ê SÔ  and further diluted 

with 5 ml of 0.3 M (with respect to (MoOĵ )"̂ ) ammonium molyhdate. The 

sample was then diluted to 25 ml with distilled water. The color inten­

sity was measured at lf-00 mu on a Beckman Model B spectrophotometer not 

sooner than two minutes nor later than ten minutes after the addition of 

ammonium molybdate. Calculation of the silica content was made by refer­

ence to a standard curve. The standard silica solution vas prepared by 

dissolving sodium metasilicate (Nâ SiO *9 HO) in distilled water acidified 
id J  ̂

with EgSÔ  so that the final pH is about 1.5. Aliquots of the standard 

solution were used to prepare a standard curve up to about 1.0 mg SiOg 

per 25 fill. The silica content as determined from the standard curve was 

then corrected for the hydroscopic moisture content of the sample and the 

silica content reported in grams per 100 grams oven-dry mixture. 
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RESULTS MD DISCUSSION 

Strength vs. Time and Temperature 

Results 

No significant loss of moisture was found in any of the samples cured 

at 5°C, 23°C and 40°C up to $6 days, $0°C up to 28 days and 60°C up to lî| 

days. Samples cured at 50°C for $6 dê '̂-s and at 60®C for 28 and $6 days 

seemed excessively dry and the containers were completely dry. This lack 

of excess water is believed to have critical effects on the strengths ob­

tained and the formation of reaction products; therefore, data on the 

samples cured at those temperatures for those times were ignored. 

Figure 4 shows the average and extreme unconfined compressive strengths 

as a function of curing time for the' various curing temperatures. Except 

for the 3 day curve at 5°C, the figure shows an increase of strength with 

time at all tempsratures with the greater rate of increase at the higher 

temperatures. This was as expected. The drop in strength for 3 day curing 

at 5°C appears to be due to experimental error. 

Figure 5 shows the unconfined compressive strength as a function of 

'"T  +  h t W I O  
log T̂ ; with T̂  = 2̂  * A, where T = curing temperature in C and 

A = curing time in days. This function of time and temperature was chosen 

because Metcalf ( h 6 )  showed that of all the "maturity" laws, this one gave 

the closest fit to the results of lime-caly stabilization. The used in 

this expression is merely a simplification of Hastrup's (5l) "maturity" 

rule, T = f 2̂  ̂ when the temperature at which the reaction a 
o 

ceases is considered to be - 11.7°C and the curing takes place at a con­

stant temperature during the entire curing time. The temperature - 11.7®C 
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vas chosen "because Plowman (50) determined this temperature to be the 

datum temperature for concrete maturity calculations. Saul ($6) had 

earlier chosen - 10°C for the datum on the basis of curve fitting. Plow­

man made his modification on the basis of direct measurements. A plot of 

the unconfined compressive strengths of the present investigation was 

made using - 10° C as the datum temperature and it was found that there 

was a great deal more scattering of points than when the - 11.7®C datum 

temperature was used. However, even with the increased scatter, the - 10-C 

datum temperature plot had all the characteristics of Figure 5« 

Discussion 

Examination of Figure 5 shows a grouping of points along two different 

lines. The lower line is formed by the unconfined compressive strengths of 

samples cured at 5°C and 23°C; the upper line by the unconfined compressive 

strengths of the samples cured at 40°C, 50°C, and 60°C. Plotting the 

average unconfined compressive strength as log (UCS) = B' - B"/T ("Absolute) 

in the fashion of Metcalf (46), Figure 6 shows a similar trend. If equal 

slopes are taken to indicate that the strength is due to a similar reaction, 

the following results : all curing times except 1 day curing produce the 

same reaction over the temperature range 5-23°C. For the 1 and 3 day cur­

ing this temperature range is extended to 40°C. In the range 40-60°C, 1 

and 3 day curing produce another reaction. For the other curing periods a 

third reaction is responsible for strength development over the range 40-

6o°C. In the range 23-40®C either the second reaction or a combination of 

the first and third reactions is responsible for the strength development. 

One tentative explanation is that a different reaction product is 

formed at different curing temperatures and that the cut-off temperature 
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lies between 23°C and hO°C. Wang (66) found with the same materials used 

' in this investigation and C/S = 0.892s mixtures produced CSH(gel), CSH(l), 

hydrogarnet, and vhen cured at 4o°C for periods of 7 to l80 days, 

the products formed being dependent on the curing time. The same mixture 

composition cured at 23°C for periods of from 28 to l80 days produced only 

CSH(gel) and Glenn (ij) also found, when investigating a similar 

bentonite-lime mixture with C/S = 0.69, that mixtures cured at room temper­

ature for long periods produced CSE(I), CSH(gel), and possibly 

CSH(II). Mixtures of the same composition cured hydrothermally for short 

periods yielded; CSH(gel), CSE(l), and at 40°C, and CSH(l), and 

possibly CSH(II) or aluminum substituted tobermorite at 80°C. 

Another explanation is that a complex reaction is taking place. In 

support of this, Taylor (58) in discussion of lime-quartz paste reactions 

says that although many details of the reaction are obscure and others 

depend on the- conditions of the investigation, the general picture seems 

to be clear: Reactions on the quartz surface initially give a lime-rich 

substance similar to CSE(II), When the overall C/S ratio is low, this 

reaction proceeds until all the lime is depleted; the CSH(II) then reacts 

with more quartz giving CSE(l), the C/S ratio of which eventually drops 

to 0.8. If the temperature and time are sufficient, the CSH(l) then re-

crystallizes to tobermorite. If the overall C/S ratio is below 0.8, the 

CSH(l) or tobermorite also reacts slowly with the unused quartz to give 

gyrolite. 

If the lime-clay reaction is similar to the lime-quartz reaction, and 

on the basis of reaction products it appears that it is, then it would 
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appear that a complex reaction is taking place. It also appears that this 

k 1 
complex reaction is a consecutive reaction, of the form A + B ->-C in 

which k is the rate constant for the first step and 1 is the rate constant 

for the second step (38). With 1 = k no C will be formed, and if l<<k a 

negligible amount of D will be formed. Since k and 1 are temperature de­

pendent, at some temperature where k is slightly larger than k, both C and 

D will be present. As time progresses the amount of D will build up where­

as the amount of C will increase slower. Kow if D contributes more to the 

strength of the mixture than does C, at some time when the amount of D in 

the mixture is great enough, the mixture will behave as though all of its 

strength was coming from D. At temperatures around room temperature and 

below only the first reaction would be taking place; at temperatures of 

40°C and higher the second reaction will be taking place at relatively the 

same rate as the first, so that essentially there is very little if any of 

the first product formed. 

In general, this consecutive reaction theory may be substantiated by 

data from Wang (66), who showed that CSH(gel) formed at low curing times 

and temperatures, and converted to another CSH phase with prolonged curing. 

Figure 4 also confirms that even though it appears that the strength 

gain of the lime-clay mixtures cured at different temperatures is due to 

different phases of the complex reaction, it is possible to utilize accel­

erated curing methods to approximate the strengths of soil-lime mixtures 

cured at lower temperatures for longer'times. However, the results of 

this investigation also point out that because of the differing reactions 

with lime and different soils, care must be exercised in the use of accel­

erated curing tests. Each soil that is to be subjected to accelerated 
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curing should be investigated thoroughly to assure that disproportionate 

strengths are not achieved by accelerated curing. 

Reaction Products 

The analysis of the reaction products formed will be made on the basis 

of X-ray diffraction curves and data obtained from the spectrophotometer 

analysis of leachates. The results will be discussed according to the 

curing times. 

Figure 7 shows the acid-soluble alumina after curing at various temper­

atures for various times, corrected for the 0.13 grams alumina per 100 

grams oven-dry mixture found to dissolve from the natural clay. The 

altmina is expressed in grams Al̂ Ô  per 100 grams oven-dry mixture. 

Figure 8 shows the acid-soluble silica after curing at the various 

temperatures for various times, corrected for the 0.06 grams silica per 

100 grams oven-dry mixture dissolved from the natural clay. The silica is 

expressed in grams SiÔ  ;ger 100 grams oven-dry mixture. 

One day curing 

The X-ray diffraction curves for one day curing confirm that reaction 

products in the tobermorite hydrate group are formed at l temperatures, 
o 

indicated by peaks at 3.07 and 1.82 A. All curing temperatures also pro­

duce a slight amount of Cĵ AĤ , indicated by peaks in the regions of 7.5, 
o 

k.l, 3.99s and 2.88 A. However * the mixture cured at 23°C gives the most 
o * 

definite peak in the region of 7.5 A. The mixture cured at 60°C also has 
o o 

broad weak peaks at 3.03 and 1.97 A. The additional peak at 3.03 A prob­

ably indicates that there are two phases of the tobermorite group present 
o 

in the cured mixture, i.e., CSH(II) and'CSH(gel). The 1.97 A peak 
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corresponds to a peak found by Diamond (12) in iron or magnesium substitu­

ted tobermorite; since no data are available on lattice substitution in 

CSH(ll) or CSE(gel), this may indicate that some substitution is taking 

place in one or both of these. 

At one day curing there is little difference in the amount of acid-

soluble silica and alumina found after curing at 5°C and that found after 

curing at 60°C (Figures 7 and 8). 

Three day curing 

The X-ray diffraction curves for three day curing are essentially the 

same as those for one day curing, except that mixtures cured s-t all temper-
o 

atures have weak peaks in the region of 10,5 - 9.8 A, indicating the pre-
o 

sence of CSH(II). The diagnostic 7.5 A peak is missing from all curves but 
o 

the other Ĉ AÊ  peaks are still weakly present. The 1.97 A peak doss not • 

appear in any of the curves but there is a broad hump in the region of 
o 

3.03 A on all curves. The rate of increase of acid-soluble alumina and 

silica with respect to temperature is slightly greater for this curing 

time than it was for one day curing (Figures J and 8). 

Seven day curing 

The X-ray diffraction curves of this curing time are the same as 
o 

those for three day curing, however, the 7.5 A peak of Cĵ AĤ  is quite 

evident at 50°C and 60°C curing temperature, but not at the lower temper-

o 
atures. At these same curing temperatures the 1.98 A peak indicating 

possible iron or magnesium substitution in the calcium silicate hydrate 

reappears. The rate of increase of acid-soluble alumina with respect to 

temperature is approximately'- constant between 23°C and 50®C but increases 
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between 50°C i-md tO®C (Figure 7)0 The rate of increase of acid-s.cluble 

silica i£ constant from to J+0®C but increases from 40°C to 50*C and 

tlieu decreases slightly betveeii 50°C and 60®C (Figure 8). The latter Bay 

be another indication of lattice substitution. 

l4 day curing 

The X-ray diffraction curves again are the same as those for seven 

day curing. A noticeable feature thcngh, is the charge in shape of the 

O 
cvxres for 50°C and 6Q°C curing temperatures at 3.07 A. At shorter cur­

ing times this peak was relatively sharp, but now it has become very 

o 
broad. At 60*C curing teapsrature additional peaks at 2.74 and 2.23 A 

o o 
occur. The 2.74 A peak is between a 2.78 A peak r-,sorted by Diamond (12) 

for CSH(I) and a 2.7 A peak also reported by aisii for aluminum substituted 
o 

tobermorite. The 2.23 A peak cannot be accounted for. 

28 day curing 

The diffraction curves for 50°C curing is the same as that of 60°C 

curing for l4 days, but the other curing temperatures do not exhibit any 

change from the l4 day curves. It should be noted that there is a great 

increase in the rate of increase of acid-soluble silica and alumina 

between 40°C and 50°C (Figures J and 8). 

56 day curing 

The X-ray diffraction curves for 56 day curing are the same as those 

for 28 day curing except that very distinct peaks appear on all curves in 
o 

the region of 7*5 A, indicating the definite formation of crystalline 

Summary of X-ray data 

No evidence of formation of hydrogamet, ordinarilĵ  shown by peaks 
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o 
in the region of 2.68, 3.00, and I.61 A, was found in any of the X-ray 

diffraction curves. 

A summary of the crystalline products diagnosed from X-ray diffraction 

are shewn in Table 5. Ĉ ÂÊ  is reported as present only where there are 
o 

peaks in the region of 7.5 A; at other times it is reported as probable, 

on the basis of other peaks. 

Table 5. Summary of crj-stalline products observed from X-ray analysis 

Cui'ing Temp. Curing,Time 
"C 

1 day 3 days. T. days 14 days . 28 days.. 56 days 

5 A?,G A?,G,II A?,G,II A?,G,II A?,G,II A,G,II 

23 A,G A?,G,II A?,G,II A?,G,II A?,G,II A,G,II 

ho A?,G A?,G,II A?,G,II A?,G,II A?,G,II A,G,II 

50 A?,G A?,G,II A,Ga,IIa A,Ga,IIa A,Ga,Ia,IIa N.D. 

60 A?,Ga,IIa A,G,II .A,Ga,IIa A,Ga,Ia,IIa , . N.D.. . K.D. 

A - C.AH 
h n 

G - CSE(gel) 

I - CSH(I) 

II - CSH(II) 

? - probable 

a - probable lattice substitution 

N.D. - not determined 

At 5"C, 23°C and 40°C curing temperatures Cĵ AÊ , CSH(gel) and CSE(ll) 

appear to be the stable phases. The same products appear at 50®C and 60®C 
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curing temperatures, with probable lattice substitutions and CSH(I) appear­

ing after several days of curing. 

Examination of Table 5 also reveals that the X-ray diffraction curves 

gave supporting evidence to the theory advanced earlier, that the lime-

clay reaction is a consecutive reaction: 

lime + clay ̂  CSH(gel) CSH(II) CSH(l), 

as evidenced by the trend indicated in the 50°C and 60°C curing; and that 

at any given time there may be more than one phase of the reaction present, 

depending upon the curing time and temperature. 

C/S ratio of reaction products 

Table 6 shows the apparent C/S ratio of the reaction products at the 

different curing times and temperature, based on the results of the X-ray 

diffraction determination of calcium hydroxide in the cured mixture, and 

the spectrophotometer determination of acid-soluble silica and alumina. 

These C/S,.ratios were computed after making these assumptions; 

1. All the calcium hydroxide that disappears during curing is 

assumed to enter into the pozzolanic reaction. 

2. All acid-soluble alumina is assumed to come from C, AS 
4 n 

reaction products. 

The first assumption may be incorrect because as Hilt and Davidson 

(26) have shown, some of the lime is utilized in the modification of clay 

and hence does not enter into the pozzolanic reaction. Ho and Handy 

(27,28) have further shown that this lime does not show up on DTA curves, 

suggesting that the lime is adsorbed onto the clay structure. Since the 

exact amount of lime utilized in this manner could not be determined, the 
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assumption vas made to make a rough comparison rather then an exact deter­

mination of the reaction products' C/S ratio. 

Table 6. C/S ratio of dissolved reaction products after assuming all 
acid-soluble alumina comes from Ĉ AH products and all cal­
cium hydroxide that disappears is utilized in calcium sili­
cate and calcium eliminate products 

Curing Temp, Curing.Time 
°C 

1 day . .  3.days 7 days.  l4 days 28 days 56 days 

5 6.0 6.2 6.6 h.7 5.8 3.8 
23 3.4 3.8 2.6 3.6 3.2 2.7 
4o 2.6 1.9 1.7 1.7 1.8 1.5 
50 2.7 1.7 1.7 1.6 .9 -

60 2.9 1.8 1.2 1.3 - ' -

The second assumption may also be in error because of the indication 

of lattice substitution in the reaction products. However, since the 

amount and type of substitutions that do occur cannot be accurately de­

termined, the assumption was considered valid enough for comparison pur­

poses. The assumption of formation of only Ĉ ÂĤ  products seems valid on 

the basis of X-ray analysis and the fact that in this temperature range 

the tetracalcium aluminate hydrates are most likely to be formed (63). 

The C/S ratios of the reaction products of the mixtures cured at 1;0®C, 

50®C, and 60®C are all ic the same range. Those of the mixtures cured at 

5°C and 23®C are in an altogether different range. At this point it should 

be recalled that the C/S ratio of the tobermorite group of calcium silicate 

hydrates is in the range of 0.8 to 2.0 (60). 

The validity of the first assumption is indeed questionable at low 

curing temperatures and short curing times, as the apparent C/S ratio is 
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much higher than is believed possible for the tobermorite group (Table 6). 

Indeed, it is so much higher that it seems reasonable to take this as 

additional evidence that an appreciable amount of calcium is adsorbed onto 

the clay structure as suggested by Ho and Handy (2T,28). At higher temper­

atures and longer curing times the effect of this erroneous assumption is 

reduced because of the dissolution of the clay and the accompanying release 

of the adsorbed calcium. It appears, however, that if allowances are made 

for errors due to lattice substitution and adsorbed calcium, that the 

apparent C/S ratios of the reaction products generally correspond to those 

expected from the X-ray analysis, i.e., of the order of 0.8 to 2.0. 

S/A ratio of reaction products 

Table 7 gives the ratio of acid-soluble silica to acid-soluble alumina 

at the different curing times and temperatures. Plots of these data 

against time, temperature, and unconfined compressive strength showed no 

consistent relationship except that all values of S/A are between 3.6 and 

5.9 (Figure 9). The average is or about identical with the S/A ratio 

of the clay, which is it.75. This would suggest that at all temperatures 

the lime is reacting with the clay along edges of the sheets rather than 

on the flat surfaces, since if the reaction were taking place on the sur­

face of the tetrahedral sheets the S/A ratio would be higher than 4.75. 

The close agreement of the S/A ratio of the dissolved reaction products to 

the S/A ratio of the clay also indicates that the chemical determination 

of the acid-soluble silica and acid-soluble alumina is valid. 
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Table f, S/A ratio of dissoved reaction products at various curing times 
and temperatures 

Curing Temp. Curing.Time. 
O f  

1 day 3 days. .7 days. .14 days .28 days . 56.days. . Avg. 

5 5.0 U.O 4.5 5.4 5.3 5.9 5 = 02 
23 5.0 4.7 5.6 4.4 4.6 4.1 4.73 
ho h.9 5.1 4.9 4.7 5.0 4.3 4.82 
50 h,k 4.8 5.5 4.3 3.6 — 4.52 
60 5.5 k,2 4.4 4.7 — — 4.70 
Avg. , h.9S h.36 4.98 4.70 4.62 4.77 4.76 

Relation of Strength to Reaction Products 

Jambor (30) has shown that the compressive, strength of a mixture is 

affected by the volume and by the kind and micro-structure of the cementi-

tious hydration products developed. With this in mind let us examine the 

relationships, if any, of the various factors that have been determined in 

the investigation to the unconfined compressive strength of the cured 

mixtures. 

As can be seen from Figure 9, the S/A ratio of dissolved reaction pro­

ducts has little or no effect on the strength of the cured- mixture. 

Figure 10 shows the unconfined compressive strength of the mixture as 

a function of the .calcium hydroxide present in the cured samples. It is 

evident that the strength of the mixture is not a function of the calcium 

hydroxide alone, but that the temperature of curing has an effect on the 

strength of the mixture developed by the reaction of a given amount of 

calcium hydroxide. It is also evident that in the samples cured at 5®C 

and 23°C, the difference in temperature has little effect on the strength 
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developed by the siaount of disappearing calcium hydroxide. The same fea­

ture is noted in the samples cured at 40̂ 0, 50®C, and 60°Ĉ  Hovever, 

there is a noticeable difference in the strength developed by the disap­

pearance of a givsa amount of calcium hydroxide between samples cured at 

23®C and 40®C. 

Fig-ure 11 shows the unconfined compressive strength as a function of 

acid-soluble silica. Here again it appears that tempera.kure plays a role 

in determining the strength developed by a given amount of silica. The 

samples cured at 5®C and 23°C follow one curve, the samples cured at 5G®C 

and 60®C follow another, and the samples cured at 0̂°C follow still 

another. 

Figure 12 shows the unconfined compressive strength as a function of 

acid-soluble alumina. The figure displays the same characteristics as 

Figure 11. 

On the basis of these figures it can only be concluded that at a given 

curing temperature the cured sample that has the largest amount of acid-

soluble silica or alumina, or the smallest amount of unreacted calcium 

hydroxide, will have the highest unconfined compressive strength. These 

figures also confirm that there is a different phase of the reaction re­

sponsible for strength development at 50°" and 6o®C curing temperatures 

than at the 5°C and 23°C curing temperatures, but they do not explain the 

more efficient strength development in terms of acid-soluble silica and 

alumina with che intermediate kO°C cur*ing temperature. 

The average unconfined compressive strength as a function of apparent 

C/S ratio is shown in Figure 13. Although there is a large amount of 

scatter it is evident that for the production of high strengths it is 
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necessary to have an apparent C/S ratio less than two. 

These low C/S ratios are produced at curing temperature? of and 

higher (Table 6). This probably accounts for the two distinct groupings 

of points in Figure 5-

It also appears that the farther the consecutive reaction proceeds 

the lower the C/S ratio becomes and the higher goes the unconfined com­

pressive strength (Tables 5 and 6, Figure U). 

To summarize, the compressive strength of the mixture is affected by 

the crystalline structure as well as the amount of reaction products form­

ed in the lime-clay reaction. This was evident from the more efficient 

strength development in terms of acid-soluble silica and alumina, and 

disappearing calcium hydroxide at the higher curing temperatures. This 

increased strength development was accompanied by a change in the number 

of crystalline reaction products detected by X-ray analysis. It appears 

that the S/A ratio of the reaction products has no apparent effect on 

strength developing potential of the reaction products, but the C/S ratio 

does. 
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CONCLUSIONS 

Based' on this investigation the following conclusions were reached: 

1. The strength gain of lime-clay mixtures cured at different 

temperatwes is due to different phases of a complex reaction. 

2. This complex reaction is; lime + clay -»• CSH(gsl) -> CSE(ll)+ 

CSH(l) tohermorite. The farther the reaction proceeds, 

the higher the strength, 

3. At curing temperatures of 50®C and higher, lattice substitu­

tions take place in the structure of the calcium silicate 

hydrates. 

4. There is no consistent relationship between time, temperature, 

strength, and the S/A ratio of the reaction products. 

5. The curing temperature has an effect on the strength developed 

by a given amount of silica in a cured lime-clay mixturê  

6. At a given curing temperature the cured sample that has the 

largest amount of acid-soluble silica or aluirlna, will give 

the highest strength. 

7. To achieve high strengths the apparent C/S ratio must be less 

thac two. 

8. Some calcium is adsorbed onto the clay structure rather than 

entering into a pczzolanic reaction as evidenced by abnormally 

high appai'-ent C/S ratios at low curing temperatures. 

9. The total S/A ratio of the lime-clay reaction products equals 

that of the clay mineral. Thi? suggests that lime reacts with 

the clay along edges of the clay sheets rather than on the 
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flat surfaces. 

10. Alumina in the reaction products occurs mainly in C, AS at 
4 n 

all curing temperatures; at curing temperatures of 50°C or 

higher J some alumina may substitute isomorphously in the 

calcium silicate hydrate structures, 

11. It is possible to determine the.amount of silica and alumina 

in lime-clay reaction products by spectrophotometer analysis 

vi.th sufficient accuracy for compai-ison purposes. 
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